Long-lasting, context-dependent modification of stepping in the cat after repeated stumbling-corrective responses.

نویسندگان

  • D A McVea
  • K G Pearson
چکیده

A consistent feature of animal locomotion is the capacity to maintain stable movements in changing environments. Here we describe long-term modification of the swing movement of the hind leg in cats in response to repeatedly impeding the movement of the leg. While studying phase transitions in the hind legs, we discovered that repetitively evoking the stumbling-corrective reaction led to long-lasting increases in knee flexion and step height during swing to avoid the impediment. These increases were apparent after nearly 20 stimuli and maximal after about 120 stimuli and, in some animals, they persisted for > or =24 h after presentation of the stimuli. Furthermore, these long-lasting changes were context dependent and did not generalize to other environments; when walking was observed in an environment distinct from that used in training, the hind-limb kinematics returned to normal. To gain insight into what regions of the nervous system might be involved in this long-term modification, we examined the changes in stepping in decerebrate cats after multiple perturbed steps. In this situation, there was a short-term increase in step height, although this increase was smaller than that evoked in intact animals and persisted for <1 min after termination of the stimuli. Thus induction of the long-term increase in step height requires the forebrain. We propose that the conditioned change in leg movement is related to a general ability of animals to adapt locomotor movements to new features of the environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connecting the dots between animal and human studies of locomotion. Focus on "Infants adapt their stepping to repeated trip-inducing stimuli".

During an infant’s first well-baby examination, the clinician may lift the neonate from under her arms, place her feet in contact with a firm surface, and lean her upper body forward to evoke the infant stepping reflex. In recent years, researchers have taken interest in infant stepping as a transitional model to connect the dots between basic animal studies and human locomotor function. In thi...

متن کامل

Stumbling corrective reaction during fictive locomotion in the cat.

An obstacle contacting the dorsal surface of a cat's hind foot during the swing phase of locomotion evokes a reflex (the stumbling corrective reaction) that lifts the foot and extends the ankle to avoid falling. We show that the same sequence of ipsilateral hindlimb motoneuron activity can be evoked in decerebrate cats during fictive locomotion. As recorded in the peripheral nerves, twice thres...

متن کامل

Intracellular analysis of reflex pathways underlying the stumbling corrective reaction during fictive locomotion in the cat.

In cat and humans, contact between an obstacle and the dorsum of the foot evokes the stumbling corrective reaction (reflex) that lifts the foot to avoid falling. This reflex can also be evoked by short trains of stimuli to the cutaneous superficial peroneal (SP) nerve in decerebrate cats during the flexion phase of fictive locomotion. Here we examine intracellular events in hindlimb motoneurons...

متن کامل

P19: Long-Term Potentiation

The term synaptic plasticity points to a series of persistent changes related to the activity of synapses. Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulations. Differe...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 1  شماره 

صفحات  -

تاریخ انتشار 2007